Varying-Coefficient Additive Models for Functional Data
نویسنده
چکیده
Abstract Both varying-coefficient and additive models have been studied extensively in the literature as extensions to linear models. They have also been extended to functional response data. However, existing extensions are still not sufficiently flexible to reflect the functional feature of the responses. In this paper, we extend both varying-coefficient and additive models to a much more flexible “varying-coefficient additive model” and propose a simple algorithm to estimate the nonparametric additive and varying-coefficient components of this model. We establish the L2 rate of convergence for each component function and demonstrate the applicability of the new model through traffic data.
منابع مشابه
Long-term Iran's inflation analysis using varying coefficient model
Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...
متن کاملSpatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients
In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...
متن کاملPenalized estimation in additive varying coefficient models using grouped regularization
Additive varying coefficient models are a natural extension of multiple linear regression models, allowing the regression coefficients to be functions of other variables. Therefore these models are more flexible to model more complex dependencies in data structures. In this paper we consider the problem of selecting in an automatic way the significant variables among a large set of variables, w...
متن کاملAdditive and multiplicative hazards modeling for recurrent event data analysis
BACKGROUND Sequentially ordered multivariate failure time or recurrent event duration data are commonly observed in biomedical longitudinal studies. In general, standard hazard regression methods cannot be applied because of correlation between recurrent failure times within a subject and induced dependent censoring. Multiplicative and additive hazards models provide the two principal framework...
متن کاملGeneralized varying coefficient models for longitudinal data
We propose a generalization of the varying coefficient model for longitudinal data to cases where not only current but also recent past values of the predictor process affect current response. More precisely, the targeted regression coefficient functions of the proposed model have sliding window supports around current time t. A variant of a recently proposed two-step estimation method for vary...
متن کامل